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AbdraeL "e gmund stale configuration of llie two-dimensional (ZD) Heisenberg model 
is a topic to wliicli much theoretical effort is king applied with particular emphasis 
on tlie frusmtion eKects mused by exchange mmpetilion belween spins d different 
neighbouring shells In this respect a central lopic ir. the effect of quantum Ruduations 
on Ule soft modes present in the simple spin wwe dispersion curve. A rigorous theorem 
based on Ule Bogoliulm inequality implies that a zem energy ercilation must exist 
at Ule h e l i  waveveclor Q when long-range order is present. Recently it has teen 
suggested lhal only Ihe soft mode at k = 0 sulvives quanlum Ruduations in the square 
frustrated Heisenberg antiferromagnel. so that the Goldstone mode at E = Q muld 
be recovered only ly looking for an excitation different Irom the single-particle-Iik 
excitation. We show tltat lhis m u l l  is a spurious mnsequence of neglecting second- 
order penurhation contributions which are of the same power in 11.5 as the first-order 
penurbation mnlribulion amounted for evaluating lhe magnon self-energy. Indeed we 
show thnl a delicate lalance of these contributions restores the Goldstone made at the 
helk wavevector 4 and substantially reduces the value of the quanlum gaps that replace 
the occidorrol soft made of the simple spin wave spectrum. 

1. Introduction 

The loosely packed two-dimensional (ZD) Heisenberg antiferromagnet with nearest 
neighbour (NN) coupling and S > exhibits long-range order (LRO) at zero temper- 
ature 111 and well grounded arguments support the existence of LRO at T = 0 even 
for S = [Z]. Exchange competition between spins of different shells of neighbours 
prevents exact approaches, but certainly introduces a rich manifold of spin configu- 
rations (see for instance [3]) and the existence of a spin liquid phase in the vicinity 
of nilrgic lines in the parameter space is currently accepted 141. In particular we 
consider the so called 3~ antiferromagnetic 2D Heisenberg model on a square lattice 
where the NN spins are coupled antiferromagnetically while next nearest neighbours 
(NNN) and third nearest neighbours (TNN) can be either ferromagnetically or anti- 
ferromagnetically coupled. In the classical approximation [5] four minimum energy 
configurations exist at zero temperature: AF, AF,, H~ and H ~ .  The AF configura- 
tion is the usual two-sublattice antiferromagnetic configuration characterized by the 
wavevector Q = (T, T). (From now on we assume a unit lattice constant.) The AF, 
configuration consists of ferromagnetic lines of spins alternating antiferromagnetically 
with Q = (r,O). The H, configuration is a helixwith Q = (?r,arccos[(2j2-l)/4j,]) 
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where j, = J 2 / J 1  and j3 = J 3 / J 1 ,  J , ,  J ,  and J, being the N N ,  N“, ‘INN spin 
coupling, respectively. H, is characterized by 

E Rnstclli and A Tassi 

Q = [arccos ( -1 ) ,arccos ( -1 )] . 
21, + 4j3 2j, + 41, 

The U-H, and AF-H, phase boundaries are given by 1 - 2j, - 41, = 0 with 
j, < i, while the HI-H? phase boundary is j, = 2j3 with j ,  > $. This line b 
an infinite degeneration tine because all helix Wavevectors satisfying the condition 
cos Q, + cos Q, = - l / 4 j 3  ntinimize the energy of the model in the classical ap- 
proximation. The H1-AFI phase boundary is 1 - 2 j z  + 4j3 = 0 with j, > f and 
the AF-AF, boundary is j, = i with j ,  < 0. Notice that the AF, phase consists of 
two interpenetrating antiferromagnetic sublattices of NNN spins which are completely 
decoupled so that the angle between them is arbitrary. The zero temperature phase 
diagram in the parameter space is shown in figure 1 of [SI. 

An interesting question about this model cnncems the effect of quantum fluctua- 
tions on the soft modes of the magnon spectrum obtained in the classical approxima- 
tion ( S  -CO). These soft modes are located not only at k = 0 and k = rtQ where 
Q is the helix Wavevector, but even at those wavevectors that belong to the star of 
Q [6] .  Recent calculations [fl based on an extended Schwinger boson approach ver- 
fied the persistence of soft modes at k = .tQ for antiferromagnetic configurations 
(AF or MI), whereas in the helical configuration (for instance H I )  all soft modes 
except the soft mode at k = 0 are replaced by quantum gaps. If the latter statement 
was true, one should conclude that the single-particle-like excitation does not exhibit 
Goldstone modes at k = ~ z Q  which have to be preserved for reasons of symmetry [SI 
and one should look for these GoIdstone modes in other multi-particle excitations [T. 
However we prove that the removal of the soft mode in the spin wave spectrum at 
the helix Wavevector is due to neglecting quantum corrections arising from repeated 
scattering by the three bose operator potentials, which gives contributions of the same 
order in 1 / S  as the single scattering by the four bose operator potential [SI. Indeed 
a rigorous theorem based on the Bogoliubov inequality implies that the Heisenberg 
helimagnets with LRO must have zero energy excitations at the helix Wavevector [SI. 
Before and after this theorem was proved an apparent lifting of the helix soft mode 
was found in the axial N” Heisenberg (ANNNH) model (9, 101, a quantum version 
of the well known A ” N 1  model of Fisher and Selke [Ill. However, it was realized 
[S, 12) that the lifting of the soft mode at k = &Q is an artifact of the Hartree-Fock 
191, RPA [IO] and variational [9] techniques that neglect the contribution of the three 
operator potential appearing in the bosonic equivalent Hamiltonian that one obtains 
by the usual spin-boson transformation. Indeed the HartreeFock, RPA and varia- 
tional approaches consist of keeping an average of the interaction potential so that 
at this order the cubic potential gives no contribution. In [SI we have shown and in 
[ 121 we have confirmed that the magnon at the helix wavevector is just the Goldstone 
mode Of the A ” N H  model. Here we show that the same holds for the 3N model 
for which quantum corrections have becn recently evaluated [T leading to the wrong 
conclusion that the magnon soft mode at the helix Wavevector is removed. As for the 
accidental soft modes at the wavevectors of the star of Q we confirm that quantum 
fluctuations remow: them in agreement with [7], but the value of these quantum gaps 
b severely reduced if the three operator potential is accounted for correctly. 
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2. Mathematical theory 

Let us focus on the antiferromagnetic phase AF, with Q = ( 0 ,  T ) .  In this case as well 
as for any collinear configuration the three operator potential vanishes, so that the 
only quantum correction within the first order in 1 /S,  is the Hartree-Fock correction 
that leads to the following magnon spectrum ti: 

where 

A ,  = 2 J6 S[cos Q . 6  - $ ( I  -t COS Q 1 6 )  COS k .6] (2) 
6 

B k  = - E J ~ S C C J S ~ .  6( 1 - C O S Q .  6) 

Sk = A ,  + B, 
6 

D, = A, - Bk 

(3) 

and 

tiw, = m. (6) 

For example we choose j ,  = 0 and j ,  > to give the antiferromagnetic configuration 
AF, with Q = ( 0 , ~ ) .  Note that the classkal magnon spectrum given by equation (6) 
shows soft modes at k = (O,O), k = Q = ( O , & T ) ,  b = Q’ = ( & T , O ) ,  X: = 
( h r , i n ) .  It is straightforward to verify that the magnon energy including the 
quantum correction given by equation (1) is strictly zero for k = (0,O) and k = Q = 
( 0 , i s )  which are the Goldstone modes related to the rotational invariance of the 
Heisenberg Hamiltonian. However for k = Q = ( + T , O )  one obtains 

1 I 
S N ( t i w ~ , ) 2 = - - ( 4 J I . S ) 2 ( 2 j z -  1 ) - ~ 2 ( c o s q , + c o s q l , )  

‘1 

(7) 
cos q, - cos qy + Zj,( 1 - cos ‘I, cos qy ) 
cos q, f cos q, + 2j2(  1 + cos q, cos q,) 

We have computed this quantum gap for selected values of j2 and found 

tiw& = 41J11&G (8) 

where G = 0.374, 0.447, 0.490, 0.520, 0.542 for j ,  = 0.6, 0.7, 0.8, 0.9, 1.0, re- 
spectively. An analogous calculation for k = (h, &tg) gives identical numerical 
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values. These results agree with equations (5.6) and (5.7) of [q where a mean field 
decoupling scheme of the Heisenberg Hamiltonian realized by an extended Schwinger 
boson approach is used. 

We now evaluate the effect of quantum fluctuations on the soft modes present in 
the classical spin wave spectrum at wavevectors belonging to the star of the classical 
helix wavevector Q = (?r,arccos[(Zj, - l) /4j3]) characterizing the H, configura- 
tion. For this helical configuration the removal of all soft modes in the spin wave 
spectrum except the uniform mode, has been obtained as a consequence of quantum 
fluctuations (see equation (5.21) of [7]). Conversely we prove that the soft mode at 
the helix wavevector survives quantum fluctuations, so that it has to be recognized 
as the Goldstone mode which must exist because of the rotational invariance of the 
Heisenberg Hamiltonian [SI. At the same time the accidental classical soft modes are 
removed. We stress that the crucial point is the correct expansion in 1/S. 

The magnon spectrum including a/l quantum corrections of order 1 / S  is given 

E Rastelli and A %si 

bY 
(hwk)? = (Aw:)? - (Aw:')? 

( h w , )  I 1  2 -  - -'zrW,ltlc,(k) + nc,(k)l 

(9) 

(10) 

where 

The generic expression of h i  given by equation (1) is the magnon spectrum includ- 
ing the first-order perturbation contribution coming from the four boson operator 
potential (Hartree-Fock approximation). For the 3N Heisenberg antiferromagnet one 
has 

1 
+ s h ~ ~ [ - c o s Q ~ o s q r ( l  - c o s k , ) + c o s q , ( I  -cos&,) 

P 

+ Zj, cos Q cos qs cos qy( 1 - cos kZ cos I c y )  

- j3cos2Qcos2q,(1 - c o s 2 ~ ~ ) - j 3 c o s 2 q y ( l  -cos212,)] 

1 
2 N S  + d k - ~ [ - c o s q z ( l  - cosQcos~r ) - cosq , ( l  +cask,) 

q 

- 2j2 cos q,  cos q,( 1 4. cos Q cos 12, cos kg) 

- jacos2q,(1 -c.os2Qcos212,) - j 3 c o s 2 q , ( l  - c o s % k , ) ]  

(11) 
where s,, = S q / ( 4 ~ J l ~ S )  and dq = Oq/(415,1S) are given by 

s,=1 - c o s Q + 2 j 2 c o s Q - j , ( l + r o s 2 Q )  

+ cos q, + cos qy + Zj, cos q,  cos q,  + j3( cos Zq, + cos 2q,) (12) 

(13) 

d,, = 1 -cos Q + 2j, cos Q - &(I + cos2Q)  + cos QcosqZ -cos q, 

-2 j ,cos Qcosq2cosqy f j3(c.os2Qcos2q, + cos2qy). 
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C , ( I : )  and C,(X:) appearing in equation (10) are the contributions to the self-energy 
coming from the second-order perturbation theory applied to the three operator 
potential. The generic expressions of C,(X:) and E,(hj are explicitly given by equa- 
tions (34) and (35) of 181. These two contributions lead to a quantum correction 
of the self-energy which is of the same order in 1 / S  as the first-order perturbation 
contribution coming from the four opcrator potential. Note that if one neglects hwft 
in equation (S), the remaining Hartree-Fock spectrum hwi implies the existence of 
quantum gaps both at I:  = &Q = &(Q,T)  and at I:  = &Q' = i ( r , Q ) .  Indeed 
equation (11) evaluated at 12 = i Q  gives 

1 ( h ~ i ~ ) ~  = (4J,5)2;-GldQsin2Q 2s (14fi) 
where 

1 
G - - E(- cos q, - 2 j ,  cos q,r cos q,  - 4j:, cos' Q cos 2q,)J.I.l.b 

and for X: = iq one has 

(14b) 
q 

1 - N  

(15fi) 
(hwkQ,)? I = (4.11.5)?&C;',dQ,(l +cosQ)  

where 
1 

G', = E E[- cos q,, - cos q, - ?&( 1 - cos Q) cos q, cos qy 
4 

- 2 j3 (  1 - cos Q)(cos"q, + cos ZC,~)]-. (151)) 

In equations (14n) and (1Sn) dQ and dQt arc given by 

dg  = 2 - COS Q( 1 - COS Q )  t Z j z  COS Q( 1 + COS Q) - j 3  COS ZQ( 1 - COS ZQ) 

and 

dg, = 1 -3cosQ+Zj2cosQ(1  +cos&)- j , ( l -cosZQ) .  (17) 
Note that gups (1411) and (1Sn) coincide with those in equation (5.21) of 171 obtained 
by a mean field treatment of the Heisenberg Hnmiltonian realized by an extended 
Schwinger boson approach. In contrast we stress that the complete and correct 
magnon spectrum is given by equation (9). The cubic potential contribution to the 
self-energy evaluated at k = &Q reads 
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and 
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cI ( c2 sin Q - c3 cos Q) . (l8c) 
G3 = Tx 1 

q m+ d(sq -c,sin’Q + c3sin QcosQ)(dq + cl s i n  Q) 

The cubic contribution evaluated at k = &Q’ reads 

where 

and 

~~~. -..~ ~. - 1  + , / ( / ( s q - f z ( l  + c o s Q ) - f 3 s i i i Q ) ( c f , + b 2 ( l + c ~ s Q ) + g 3 S i i i ~ ) ]  

(194 

where 

c,  = sin q,( 1 - 2j, cos q ,  + 4j, cos Q cos q,) (20) 

c2 = c.os q,( 1 + I j ?  c.os qy ) t 4j3  cos’ Q cos 2 q ,  (21) 

c3 =sit) q , ( l  + 2 j , c o s q , + 4 j 3 c o s 2 ~ c o s q , )  (22) 

c; = s i n  qJ 1 - 2j2 cos Q cos q,  - 4j3 cos Q cos q, )  (23) 

c; = 2j, sin q, sin q Y (24) 

f2 = COS q, + COS qIy + 2j2( 1 - COS Q) COS q,  COS q,  

+ 2 j 3 ( 1  - c . o s Q ) ( c . o s ~ ~ ~   COS^^,) (25) 

(26) 

(27) 

(28) 

f, = sin q,( 1 - 2j2 cos Q cos q, - 4j3 cos Q cos q,,) 

g2 = -cosq,+cosqy+2j3(1 -cosQ)(cos2q, -cos%q,) 

g3 =sill qy(  1 - 2j2 cos q, + -Ij, cos Q c.os 4,). 

We have performed the numerical evaluation of the magnon energy at k = kQ and 
k = &Q‘ given by equations (14n), (I&) and (15(1), (19~1), respectively, for j ,  = 0.1 
and selected values of j?. At k = iQ the Hanree-Fock contrihution results give 

TK& = 41J11&Gb (29) 
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where G’ - 0.407, 0.920, 0.727, 0.682, 0.410 for j ,  = 0.31, 0.4, 0.5, 0.6, 0.69, 
respectiw?y.-Note that the existence of the H~ phase is restricted to 0.3 < j ,  < 0.7 
for j ,  = 0.1. Within the limits of numerical accuracy in our calculations) 
the cubic potential contribution of equation (18n) exactly cancels the Hatree-Fock 
contribution. In this way the Goldstone mode is restored. 

At X: = 5Q’ the Hartree-Fock contribution is 

tlwiQ. = 41J,I&Cb# (30) 

where Gb, = 0.405, 1.075, 0.823, 0.463, 0.565 for j ,  = 0.1 and j ,  = 0.31, 0.4, 0.5, 
0.6, 0.69, respectively. In this case the cubic potential contribution is 

= 4]J11fiG& (31) 

where (22, = 0.381, 0.921, 0.697, 0.377, 0.272 for j 3  = 0.1 and j ,  = 0.31, 0.4, 0.5, 
0.6, 0.69, respectively. It is clear that quantum gaps replace the accidental soft mode 
of the simple spin wave spectrum. Indeed the magnon energy is 

hiQ, = 41.1,1v%GQ, (32) 

where Gb, = 0.138, 0.555, 0.437, 0.268, 0.495 for j ,  = 0.1 and j, = 0 . 3 1 ,  0.4, 0.5, 
06, 0.69, respectively. 

The quantum nature of such gaps can be experimentally distinguished from gaps 
entered by planar anisotropy. Indeed planar anisotropy also raises the magnon energy 
at the h e l i  wavevector whereas quantum fluctuations do not destroy that soft mode. 
Moreover it should be noticed that the planar anisotropy in real compounds is usually 
much weaker than the exchange energy whereas the quantum gaps described here 
are clearly of the order of the exchange coupling. An inelastic neutron scattering 
experiment can easily select bctween gaps of a quantum nature and customary gaps 
caused by anisotropy. 

3. Summary 

We have shown that the soft mode at the helix wavevector Q in the magnon dis- 
persion curve survives quantum fluctuations so that the Goldstone mode related to 
the rotational invariance of the Heisenherg Hamiltonian has to be identified with the 
single-particle-like excitation at X: = Q even for the square frustrated antiferromagnet 
when LRO is present. On the other hand the existence of LRO at zero temperature 
in such a model may be questionable only where a signal in this sense can be found. 
This is the case of the AF-H,, AF-H,, and H~-H, boundary lines on which or, per- 
haps in their vicinity, the peculiar softening of the normal mode frequencies obtained 
in classical approximation seems to indicate the destruction of LRO [4].  As for the 
internal regions where the AF, M I ,  H, and H? phases exist, LRO is expected. Possi- 
ble change in the helix wavevector caused by quantum fluctuations [13] is of order 
l / S  and this should affect the magnon energy only at orders higher than 1/S. This 
higher order correction is outside the scope of the present calculation. We stress that 
any physical inference based on the spurious removal of the Goldstone modes in the 
magnon spectrum is meaningless. 



1574 E Rastelli and A Toni 

References 

Kubo K and Kislii T 1988 Phys Rea Lnr 61 2585 
Mntiis D C and Pan C Y 1988 Phys Ro: Lerr 61 463 
Rastelli E, %si A and Reatto L 1979 PTiysiCO B 97 1 
Chandm R Coleman P and Larkin A I 1990 Phys. Ra! L m  64 &4 
Pimpinelli A and Raslelli E 1990 Phys Rea B 42 984 
Sliender E F 1982 Sou P/tys..J€TP 56 178 
Chandm P, Coleman P and Larkin A I 1990 J .  Php: Condnrr Muilrr 2 '1933 
Rastelli E, Rat to  L and % s i  A 1985 1. Phys. C: Solid Smre mys. IS 353 
Raslelli E, Reatto L and %si A 1984 J.  @L Phys. 55 1871 
Diep H T I989 Phys. RN B 40 741 
Fsher M E and Selke W 1980 Phys. Ra! bit 44 1502 
Rastelli E and %si A 1991 Phjs Rea 8 43 11453 
Rastelli E and Bssi A I986 J Phys C: Solid Smc Pbs 19 1993 
Chubukov A B 1984 I Fitys. C. Solid Store Fliyx 17 W91 


